Computer Science > Machine Learning
[Submitted on 19 Oct 2024]
Title:GNNRL-Smoothing: A Prior-Free Reinforcement Learning Model for Mesh Smoothing
View PDF HTML (experimental)Abstract:Mesh smoothing methods can enhance mesh quality by eliminating distorted elements, leading to improved convergence in simulations. To balance the efficiency and robustness of traditional mesh smoothing process, previous approaches have employed supervised learning and reinforcement learning to train intelligent smoothing models. However, these methods heavily rely on labeled dataset or prior knowledge to guide the models' learning. Furthermore, their limited capacity to enhance mesh connectivity often restricts the effectiveness of smoothing. In this paper, we first systematically analyze the learning mechanisms of recent intelligent smoothing methods and propose a prior-free reinforcement learning model for intelligent mesh smoothing. Our proposed model integrates graph neural networks with reinforcement learning to implement an intelligent node smoothing agent and introduces, for the first time, a mesh connectivity improvement agent. We formalize mesh optimization as a Markov Decision Process and successfully train both agents using Twin Delayed Deep Deterministic Policy Gradient and Double Dueling Deep Q-Network in the absence of any prior data or knowledge. We verified the proposed model on both 2D and 3D meshes. Experimental results demonstrate that our model achieves feature-preserving smoothing on complex 3D surface meshes. It also achieves state-of-the-art results among intelligent smoothing methods on 2D meshes and is 7.16 times faster than traditional optimization-based smoothing methods. Moreover, the connectivity improvement agent can effectively enhance the quality distribution of the mesh.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.