Computer Science > Information Retrieval
[Submitted on 5 Oct 2024 (v1), last revised 24 Nov 2024 (this version, v2)]
Title:Understanding the Effect of Algorithm Transparency of Model Explanations in Text-to-SQL Semantic Parsing
View PDF HTML (experimental)Abstract:Explaining the decisions of AI has become vital for fostering appropriate user trust in these systems. This paper investigates explanations for a structured prediction task called ``text-to-SQL Semantic Parsing'', which translates a natural language question into a structured query language (SQL) program. In this task setting, we designed three levels of model explanation, each exposing a different amount of the model's decision-making details (called ``algorithm transparency''), and investigated how different model explanations could potentially yield different impacts on the user experience. Our study with $\sim$100 participants shows that (1) the low-/high-transparency explanations often lead to less/more user reliance on the model decisions, whereas the medium-transparency explanations strike a good balance. We also show that (2) only the medium-transparency participant group was able to engage further in the interaction and exhibit increasing performance over time, and that (3) they showed the least changes in trust before and after the study.
Submission history
From: Daking Rai Mr [view email][v1] Sat, 5 Oct 2024 00:13:33 UTC (3,246 KB)
[v2] Sun, 24 Nov 2024 14:36:20 UTC (3,247 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.