Computer Science > Robotics
[Submitted on 21 Oct 2024]
Title:Development of Minimal Biorobotic Stealth Distance and Its Application in the Design of Direct-Drive Dragonfly-Inspired Aircraft
View PDFAbstract:This paper introduces the Minimal Biorobotic Stealth Distance (MBSD), a novel quantitative metric to evaluate the bionic resemblance of biorobotic aircraft. Current technological limitations prevent dragonfly-inspired aircrafts from achieving optimal performance at biological scales. To address these challenges, we use the DDD-1 dragonfly-inspired aircraft, a hover-capable direct-drive aircraft, to explore the impact of the MBSD on aircraft design. Key contributions of this research include: (1) the establishment of the MBSD as a quantifiable and operable evaluation metric that influences aircraft design, integrating seamlessly with the overall design process and providing a new dimension for optimizing bionic aircraft, balancing mechanical attributes and bionic characteristics; (2) the creation and analysis of a typical aircraft in four directions: essential characteristics of the MBSD, its coupling relationship with existing performance metrics (Longest Hover Duration and Maximum Instantaneous Forward Flight Speed), multi-objective optimization, and application in a typical mission scenario; (3) the construction and validation of a full-system model for the direct-drive dragonfly-inspired aircraft, demonstrating the design model's effectiveness against existing aircraft data. Detailed calculations of the MBSD consider appearance similarity, dynamic similarity, and environmental similarity.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.