Computer Science > Computation and Language
[Submitted on 17 Oct 2024]
Title:Computational Approaches to Arabic-English Code-Switching
View PDF HTML (experimental)Abstract:Natural Language Processing (NLP) is a vital computational method for addressing language processing, analysis, and generation. NLP tasks form the core of many daily applications, from automatic text correction to speech recognition. While significant research has focused on NLP tasks for the English language, less attention has been given to Modern Standard Arabic and Dialectal Arabic. Globalization has also contributed to the rise of Code-Switching (CS), where speakers mix languages within conversations and even within individual words (intra-word CS). This is especially common in Arab countries, where people often switch between dialects or between dialects and a foreign language they master. CS between Arabic and English is frequent in Egypt, especially on social media. Consequently, a significant amount of code-switched content can be found online. Such code-switched data needs to be investigated and analyzed for several NLP tasks to tackle the challenges of this multilingual phenomenon and Arabic language challenges. No work has been done before for several integral NLP tasks on Arabic-English CS data. In this work, we focus on the Named Entity Recognition (NER) task and other tasks that help propose a solution for the NER task on CS data, e.g., Language Identification. This work addresses this gap by proposing and applying state-of-the-art techniques for Modern Standard Arabic and Arabic-English NER. We have created the first annotated CS Arabic-English corpus for the NER task. Also, we apply two enhancement techniques to improve the NER tagger on CS data using CS contextual embeddings and data augmentation techniques. All methods showed improvements in the performance of the NER taggers on CS data. Finally, we propose several intra-word language identification approaches to determine the language type of a mixed text and identify whether it is a named entity or not.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.