Computer Science > Computation and Language
[Submitted on 15 Oct 2024 (v1), last revised 28 Oct 2024 (this version, v2)]
Title:Large-scale cloze evaluation reveals that token prediction tasks are neither lexically nor semantically aligned
View PDF HTML (experimental)Abstract:In this work we compare the generative behavior at the next token prediction level in several language models by comparing them to human productions in the cloze task. We find that while large models trained for longer are typically better estimators of human productions, but they reliably under-estimate the probabilities of human responses, over-rank rare responses, under-rank top responses, and produce highly distinct semantic spaces. Altogether, this work demonstrates in a tractable, interpretable domain that LM generations can not be used as replacements of or models of the cloze task.
Submission history
From: Loïc Grobol [view email][v1] Tue, 15 Oct 2024 20:52:09 UTC (2,623 KB)
[v2] Mon, 28 Oct 2024 17:45:56 UTC (2,625 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.