Mathematics > Numerical Analysis
[Submitted on 14 Oct 2024 (v1), last revised 17 Oct 2024 (this version, v2)]
Title:The Fujita exponent for finite difference approximations of nonlocal and local semilinear blow-up problems
View PDF HTML (experimental)Abstract:We study monotone finite difference approximations for a broad class of reaction-diffusion problems, incorporating general symmetric Lévy operators. By employing an adaptive time-stepping discretization, we derive the discrete Fujita critical exponent for these problems. Additionally, under general consistency assumptions, we establish the convergence of discrete blow-up times to their continuous counterparts. As complementary results, we also present the asymptotic-in-time behavior of discrete heat-type equations as well as an extensive analysis of discrete eigenvalue problems.
Submission history
From: Raul Ferreira [view email][v1] Mon, 14 Oct 2024 12:51:55 UTC (28 KB)
[v2] Thu, 17 Oct 2024 13:52:33 UTC (28 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.