Computer Science > Software Engineering
[Submitted on 13 Oct 2024]
Title:A Model Is Not Built By A Single Prompt: LLM-Based Domain Modeling With Question Decomposition
View PDFAbstract:Domain modeling, a crucial part of model-driven engineering, demands extensive domain knowledge and experience from engineers. When the system description is highly complicated, the modeling task can become particularly challenging and time-consuming. Large language Models(LLMs) can assist by automatically generating an initial object model from the system description. Although LLMs have demonstrated remarkable code-generation ability, they still struggle with model-generation using a single prompt. In real-world domain modeling, engineers usually decompose complex tasks into easily solvable sub-tasks, significantly controlling complexity and enhancing model quality. Inspired by this, we propose an LLM-based domain modeling approach via question decomposition, similar to developer's modeling process. Following conventional modeling guidelines, we divide the model generation task into several sub-tasks, i.e., class generation, association and aggregation generation, and inheritance generation. For each sub-task, we carefully design the prompt by choosing more efficient query words and providing essential modeling knowledge to unlock the modeling potential of LLMs. To sum up all the sub-tasks solutions, we implemente a proof-of-object tool integrated into the standard Ecore editor that asks LLMs to generate an object model from the system description. We evaluate our approach with 20 systems from different application domains. The preliminary results show that our approach outperforms the single-prompt-based prompt by improving recall values and F1 scores in most systems for modeling the classes, attributes, and relationships.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.