Computer Science > Networking and Internet Architecture
[Submitted on 8 Oct 2024]
Title:SwiftQueue: Optimizing Low-Latency Applications with Swift Packet Queuing
View PDF HTML (experimental)Abstract:Low Latency, Low Loss, and Scalable Throughput (L4S), as an emerging router-queue management technique, has seen steady deployment in the industry. An L4S-enabled router assigns each packet to the queue based on the packet header marking. Currently, L4S employs per-flow queue selection, i.e. all packets of a flow are marked the same way and thus use the same queues, even though each packet is marked separately. However, this may hurt tail latency and latency-sensitive applications because transient congestion and queue buildups may only affect a fraction of packets in a flow.
We present SwiftQueue, a new L4S queue-selection strategy in which a sender uses a novel per-packet latency predictor to pinpoint which packets likely have latency spikes or drops. The insight is that many packet-level latency variations result from complex interactions among recent packets at shared router queues. Yet, these intricate packet-level latency patterns are hard to learn efficiently by traditional models. Instead, SwiftQueue uses a custom Transformer, which is well-studied for its expressiveness on sequential patterns, to predict the next packet's latency based on the latencies of recently received ACKs. Based on the predicted latency of each outgoing packet, SwiftQueue's sender dynamically marks the L4S packet header to assign packets to potentially different queues, even within the same flow. Using real network traces, we show that SwiftQueue is 45-65% more accurate in predicting latency and its variations than state-of-art methods. Based on its latency prediction, SwiftQueue reduces the tail latency for L4S-enabled flows by 36-45%, compared with the existing L4S queue-selection method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.