Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Sep 2024]
Title:Scale-Invariant Object Detection by Adaptive Convolution with Unified Global-Local Context
View PDF HTML (experimental)Abstract:Dense features are important for detecting minute objects in images. Unfortunately, despite the remarkable efficacy of the CNN models in multi-scale object detection, CNN models often fail to detect smaller objects in images due to the loss of dense features during the pooling process. Atrous convolution addresses this issue by applying sparse kernels. However, sparse kernels often can lose the multi-scale detection efficacy of the CNN model. In this paper, we propose an object detection model using a Switchable (adaptive) Atrous Convolutional Network (SAC-Net) based on the efficientDet model. A fixed atrous rate limits the performance of the CNN models in the convolutional layers. To overcome this limitation, we introduce a switchable mechanism that allows for dynamically adjusting the atrous rate during the forward pass. The proposed SAC-Net encapsulates the benefits of both low-level and high-level features to achieve improved performance on multi-scale object detection tasks, without losing the dense features. Further, we apply a depth-wise switchable atrous rate to the proposed network, to improve the scale-invariant features. Finally, we apply global context on the proposed model. Our extensive experiments on benchmark datasets demonstrate that the proposed SAC-Net outperforms the state-of-the-art models by a significant margin in terms of accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.