Computer Science > Artificial Intelligence
[Submitted on 1 Oct 2024 (v1), last revised 20 Dec 2024 (this version, v2)]
Title:LTLf Synthesis on First-Order Agent Programs in Nondeterministic Environments
View PDFAbstract:We investigate the synthesis of policies for high-level agent programs expressed in Golog, a language based on situation calculus that incorporates nondeterministic programming constructs. Unlike traditional approaches for program realization that assume full agent control or rely on incremental search, we address scenarios where environmental nondeterminism significantly influences program outcomes. Our synthesis problem involves deriving a policy that successfully realizes a given Golog program while ensuring the satisfaction of a temporal specification, expressed in Linear Temporal Logic on finite traces (LTLf), across all possible environmental behaviors. By leveraging an expressive class of first-order action theories, we construct a finite game arena that encapsulates program executions and tracks the satisfaction of the temporal goal. A game-theoretic approach is employed to derive such a policy. Experimental results demonstrate this approach's feasibility in domains with unbounded objects and non-local effects. This work bridges agent programming and temporal logic synthesis, providing a framework for robust agent behavior in nondeterministic environments.
Submission history
From: Till Hofmann [view email][v1] Tue, 1 Oct 2024 14:15:14 UTC (96 KB)
[v2] Fri, 20 Dec 2024 12:16:41 UTC (69 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.