Computer Science > Neural and Evolutionary Computing
[Submitted on 28 Sep 2024 (v1), last revised 25 Nov 2024 (this version, v2)]
Title:Analog In-Memory Computing Attention Mechanism for Fast and Energy-Efficient Large Language Models
View PDF HTML (experimental)Abstract:Transformer networks, driven by self-attention, are central to Large Language Models. In generative Transformers, self-attention uses cache memory to store token projections, avoiding recomputation at each time step. However, GPU-stored projections must be loaded into SRAM for each new generation step, causing latency and energy bottlenecks.
We present a custom self-attention in-memory computing architecture based on emerging charge-based memories called gain cells, which can be efficiently written to store new tokens during sequence generation and enable parallel analog dot-product computation required for self-attention. However, the analog gain cell circuits introduce non-idealities and constraints preventing the direct mapping of pre-trained models. To circumvent this problem, we design an initialization algorithm achieving text processing performance comparable to GPT-2 without training from scratch. Our architecture respectively reduces attention latency and energy consumption by up to two and five orders of magnitude compared to GPUs, marking a significant step toward ultra-fast, low-power generative Transformers.
Submission history
From: Nathan Leroux [view email][v1] Sat, 28 Sep 2024 11:00:11 UTC (2,705 KB)
[v2] Mon, 25 Nov 2024 12:14:33 UTC (9,200 KB)
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.