Computer Science > Machine Learning
[Submitted on 28 Sep 2024 (v1), last revised 2 Dec 2024 (this version, v3)]
Title:Strongly-polynomial time and validation analysis of policy gradient methods
View PDF HTML (experimental)Abstract:This paper proposes a novel termination criterion, termed the advantage gap function, for finite state and action Markov decision processes (MDP) and reinforcement learning (RL). By incorporating this advantage gap function into the design of step size rules and deriving a new linear rate of convergence that is independent of the stationary state distribution of the optimal policy, we demonstrate that policy gradient methods can solve MDPs in strongly-polynomial time. To the best of our knowledge, this is the first time that such strong convergence properties have been established for policy gradient methods. Moreover, in the stochastic setting, where only stochastic estimates of policy gradients are available, we show that the advantage gap function provides close approximations of the optimality gap for each individual state and exhibits a sublinear rate of convergence at every state. The advantage gap function can be easily estimated in the stochastic case, and when coupled with easily computable upper bounds on policy values, they provide a convenient way to validate the solutions generated by policy gradient methods. Therefore, our developments offer a principled and computable measure of optimality for RL, whereas current practice tends to rely on algorithm-to-algorithm or baselines comparisons with no certificate of optimality.
Submission history
From: Caleb Ju [view email][v1] Sat, 28 Sep 2024 18:56:48 UTC (68 KB)
[v2] Wed, 23 Oct 2024 19:40:50 UTC (257 KB)
[v3] Mon, 2 Dec 2024 10:15:47 UTC (945 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.