Computer Science > Cryptography and Security
[Submitted on 25 Sep 2024]
Title:SHEATH: Defending Horizontal Collaboration for Distributed CNNs against Adversarial Noise
View PDF HTML (experimental)Abstract:As edge computing and the Internet of Things (IoT) expand, horizontal collaboration (HC) emerges as a distributed data processing solution for resource-constrained devices. In particular, a convolutional neural network (CNN) model can be deployed on multiple IoT devices, allowing distributed inference execution for image recognition while ensuring model and data privacy. Yet, this distributed architecture remains vulnerable to adversaries who want to make subtle alterations that impact the model, even if they lack access to the entire model. Such vulnerabilities can have severe implications for various sectors, including healthcare, military, and autonomous systems. However, security solutions for these vulnerabilities have not been explored. This paper presents a novel framework for Secure Horizontal Edge with Adversarial Threat Handling (SHEATH) to detect adversarial noise and eliminate its effect on CNN inference by recovering the original feature maps. Specifically, SHEATH aims to address vulnerabilities without requiring complete knowledge of the CNN model in HC edge architectures based on sequential partitioning. It ensures data and model integrity, offering security against adversarial attacks in diverse HC environments. Our evaluations demonstrate SHEATH's adaptability and effectiveness across diverse CNN configurations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.