Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Sep 2024]
Title:AgRegNet: A Deep Regression Network for Flower and Fruit Density Estimation, Localization, and Counting in Orchards
View PDF HTML (experimental)Abstract:One of the major challenges for the agricultural industry today is the uncertainty in manual labor availability and the associated cost. Automated flower and fruit density estimation, localization, and counting could help streamline harvesting, yield estimation, and crop-load management strategies such as flower and fruitlet thinning. This article proposes a deep regression-based network, AgRegNet, to estimate density, count, and location of flower and fruit in tree fruit canopies without explicit object detection or polygon annotation. Inspired by popular U-Net architecture, AgRegNet is a U-shaped network with an encoder-to-decoder skip connection and modified ConvNeXt-T as an encoder feature extractor. AgRegNet can be trained based on information from point annotation and leverages segmentation information and attention modules (spatial and channel) to highlight relevant flower and fruit features while suppressing non-relevant background features. Experimental evaluation in apple flower and fruit canopy images under an unstructured orchard environment showed that AgRegNet achieved promising accuracy as measured by Structural Similarity Index (SSIM), percentage Mean Absolute Error (pMAE) and mean Average Precision (mAP) to estimate flower and fruit density, count, and centroid location, respectively. Specifically, the SSIM, pMAE, and mAP values for flower images were 0.938, 13.7%, and 0.81, respectively. For fruit images, the corresponding values were 0.910, 5.6%, and 0.93. Since the proposed approach relies on information from point annotation, it is suitable for sparsely and densely located objects. This simplified technique will be highly applicable for growers to accurately estimate yields and decide on optimal chemical and mechanical flower thinning practices.
Submission history
From: Uddhav Bhattarai [view email][v1] Wed, 25 Sep 2024 22:19:32 UTC (23,275 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.