Statistics > Computation
[Submitted on 23 Sep 2024]
Title:Bayesian computation with generative diffusion models by Multilevel Monte Carlo
View PDF HTML (experimental)Abstract:Generative diffusion models have recently emerged as a powerful strategy to perform stochastic sampling in Bayesian inverse problems, delivering remarkably accurate solutions for a wide range of challenging applications. However, diffusion models often require a large number of neural function evaluations per sample in order to deliver accurate posterior samples. As a result, using diffusion models as stochastic samplers for Monte Carlo integration in Bayesian computation can be highly computationally expensive. This cost is especially high in large-scale inverse problems such as computational imaging, which rely on large neural networks that are expensive to evaluate. With Bayesian imaging problems in mind, this paper presents a Multilevel Monte Carlo strategy that significantly reduces the cost of Bayesian computation with diffusion models. This is achieved by exploiting cost-accuracy trade-offs inherent to diffusion models to carefully couple models of different levels of accuracy in a manner that significantly reduces the overall cost of the calculation, without reducing the final accuracy. The effectiveness of the proposed Multilevel Monte Carlo approach is demonstrated with three canonical computational imaging problems, where we observe a $4\times$-to-$8\times$ reduction in computational cost compared to conventional Monte Carlo averaging.
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.