Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 18 Sep 2024]
Title:Axial Attention Transformer Networks: A New Frontier in Breast Cancer Detection
View PDFAbstract:This paper delves into the challenges and advancements in the field of medical image segmentation, particularly focusing on breast cancer diagnosis. The authors propose a novel Transformer-based segmentation model that addresses the limitations of traditional convolutional neural networks (CNNs), such as U-Net, in accurately localizing and segmenting small lesions within breast cancer images. The model introduces an axial attention mechanism to enhance the computational efficiency and address the issue of global contextual information that is often overlooked by CNNs. Additionally, the paper discusses improvements tailored to the small dataset challenge, including the incorporation of relative position information and a gated axial attention mechanism to refine the model's focus on relevant features. The proposed model aims to significantly improve the segmentation accuracy of breast cancer images, offering a more efficient and effective tool for computer-aided diagnosis.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.