Computer Science > Machine Learning
[Submitted on 17 Sep 2024]
Title:Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study
View PDF HTML (experimental)Abstract:Graph neural networks (GNNs) are a type of neural network capable of learning on graph-structured data. However, training GNNs on large-scale graphs is challenging due to iterative aggregations of high-dimensional features from neighboring vertices within sparse graph structures combined with neural network operations. The sparsity of graphs frequently results in suboptimal memory access patterns and longer training time. Graph reordering is an optimization strategy aiming to improve the graph data layout. It has shown to be effective to speed up graph analytics workloads, but its effect on the performance of GNN training has not been investigated yet. The generalization of reordering to GNN performance is nontrivial, as multiple aspects must be considered: GNN hyper-parameters such as the number of layers, the number of hidden dimensions, and the feature size used in the GNN model, neural network operations, large intermediate vertex states, and GPU acceleration.
In our work, we close this gap by performing an empirical evaluation of 12 reordering strategies in two state-of-the-art GNN systems, PyTorch Geometric and Deep Graph Library. Our results show that graph reordering is effective in reducing training time for CPU- and GPU-based training, respectively. Further, we find that GNN hyper-parameters influence the effectiveness of reordering, that reordering metrics play an important role in selecting a reordering strategy, that lightweight reordering performs better for GPU-based than for CPU-based training, and that invested reordering time can in many cases be amortized.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.