Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 18 Sep 2024 (v1), last revised 19 Sep 2024 (this version, v2)]
Title:Adaptive Selection of Sampling-Reconstruction in Fourier Compressed Sensing
View PDF HTML (experimental)Abstract:Compressed sensing (CS) has emerged to overcome the inefficiency of Nyquist sampling. However, traditional optimization-based reconstruction is slow and can not yield an exact image in practice. Deep learning-based reconstruction has been a promising alternative to optimization-based reconstruction, outperforming it in accuracy and computation speed. Finding an efficient sampling method with deep learning-based reconstruction, especially for Fourier CS remains a challenge. Existing joint optimization of sampling-reconstruction works ($\mathcal{H}_1$) optimize the sampling mask but have low potential as it is not adaptive to each data point. Adaptive sampling ($\mathcal{H}_2$) has also disadvantages of difficult optimization and Pareto sub-optimality. Here, we propose a novel adaptive selection of sampling-reconstruction ($\mathcal{H}_{1.5}$) framework that selects the best sampling mask and reconstruction network for each input data. We provide theorems that our method has a higher potential than $\mathcal{H}_1$ and effectively solves the Pareto sub-optimality problem in sampling-reconstruction by using separate reconstruction networks for different sampling masks. To select the best sampling mask, we propose to quantify the high-frequency Bayesian uncertainty of the input, using a super-resolution space generation model. Our method outperforms joint optimization of sampling-reconstruction ($\mathcal{H}_1$) and adaptive sampling ($\mathcal{H}_2$) by achieving significant improvements on several Fourier CS problems.
Submission history
From: Seongmin Hong [view email][v1] Wed, 18 Sep 2024 06:51:29 UTC (17,923 KB)
[v2] Thu, 19 Sep 2024 03:54:58 UTC (8,670 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.