Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Sep 2024]
Title:Depth from Coupled Optical Differentiation
View PDF HTML (experimental)Abstract:We propose depth from coupled optical differentiation, a low-computation passive-lighting 3D sensing mechanism. It is based on our discovery that per-pixel object distance can be rigorously determined by a coupled pair of optical derivatives of a defocused image using a simple, closed-form relationship. Unlike previous depth-from-defocus (DfD) methods that leverage spatial derivatives of the image to estimate scene depths, the proposed mechanism's use of only optical derivatives makes it significantly more robust to noise. Furthermore, unlike many previous DfD algorithms with requirements on aperture code, this relationship is proved to be universal to a broad range of aperture codes.
We build the first 3D sensor based on depth from coupled optical differentiation. Its optical assembly includes a deformable lens and a motorized iris, which enables dynamic adjustments to the optical power and aperture radius. The sensor captures two pairs of images: one pair with a differential change of optical power and the other with a differential change of aperture scale. From the four images, a depth and confidence map can be generated with only 36 floating point operations per output pixel (FLOPOP), more than ten times lower than the previous lowest passive-lighting depth sensing solution to our knowledge. Additionally, the depth map generated by the proposed sensor demonstrates more than twice the working range of previous DfD methods while using significantly lower computation.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.