Computer Science > Machine Learning
[Submitted on 10 Sep 2024]
Title:Configuration Interaction Guided Sampling with Interpretable Restricted Boltzmann Machine
View PDF HTML (experimental)Abstract:We propose a data-driven approach using a Restricted Boltzmann Machine (RBM) to solve the Schrödinger equation in configuration space. Traditional Configuration Interaction (CI) methods, while powerful, are computationally expensive due to the large number of determinants required. Our approach leverages RBMs to efficiently identify and sample the most significant determinants, accelerating convergence and reducing computational cost. This method achieves up to 99.99\% of the correlation energy even by four orders of magnitude less determinants compared to full CI calculations and up to two orders of magnitude less than previous state of the art works. Additionally, our study demonstrate that the RBM can learn the underlying quantum properties, providing more detail insights than other methods . This innovative data-driven approach offers a promising tool for quantum chemistry, enhancing both efficiency and understanding of complex systems.
Submission history
From: Jorge Ivan Hernandez Martinez [view email][v1] Tue, 10 Sep 2024 01:42:10 UTC (17,732 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.