Computer Science > Formal Languages and Automata Theory
[Submitted on 11 Sep 2024]
Title:Non-Global Parikh Tree Automata
View PDFAbstract:Parikh (tree) automata are an expressive and yet computationally well-behaved extension of finite automata -- they allow to increment a number of counters during their computations, which are finally tested by a semilinear constraint. In this work, we introduce and investigate a new perspective on Parikh tree automata (PTA): instead of testing one counter configuration that results from the whole input tree, we implement a non-global automaton model. Here, we copy and distribute the current configuration at each node to all its children, incrementing the counters pathwise, and check the arithmetic constraint at each leaf. We obtain that the classes of tree languages recognizable by global PTA and non-global PTA are incomparable. In contrast to global PTA, the non-emptiness problem is undecidable for non-global PTA if we allow the automata to work with at least three counters, whereas the membership problem stays decidable. However, for a restriction of the model, where counter configurations are passed in a linear fashion to at most one child node, we can prove decidability of the non-emptiness problem.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Wed, 11 Sep 2024 03:08:39 UTC (163 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.