Computer Science > Cryptography and Security
[Submitted on 8 Sep 2024]
Title:NetDPSyn: Synthesizing Network Traces under Differential Privacy
View PDF HTML (experimental)Abstract:As the utilization of network traces for the network measurement research becomes increasingly prevalent, concerns regarding privacy leakage from network traces have garnered the public's attention. To safeguard network traces, researchers have proposed the trace synthesis that retains the essential properties of the raw data. However, previous works also show that synthesis traces with generative models are vulnerable under linkage attacks.
This paper introduces NetDPSyn, the first system to synthesize high-fidelity network traces under privacy guarantees. NetDPSyn is built with the Differential Privacy (DP) framework as its core, which is significantly different from prior works that apply DP when training the generative model. The experiments conducted on three flow and two packet datasets indicate that NetDPSyn achieves much better data utility in downstream tasks like anomaly detection. NetDPSyn is also 2.5 times faster than the other methods on average in data synthesis.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.