Mathematics > Numerical Analysis
[Submitted on 9 Sep 2024 (v1), last revised 18 Oct 2024 (this version, v2)]
Title:DeepTV: A neural network approach for total variation minimization
View PDF HTML (experimental)Abstract:Neural network approaches have been demonstrated to work quite well to solve partial differential equations in practice. In this context approaches like physics-informed neural networks and the Deep Ritz method have become popular. In this paper, we propose a similar approach to solve an infinite-dimensional total variation minimization problem using neural networks. We illustrate that the resulting neural network problem does not have a solution in general. To circumvent this theoretic issue, we consider an auxiliary neural network problem, which indeed has a solution, and show that it converges in the sense of $\Gamma$-convergence to the original problem. For computing a numerical solution we further propose a discrete version of the auxiliary neural network problem and again show its $\Gamma$-convergence to the original infinite-dimensional problem. In particular, the $\Gamma$-convergence proof suggests a particular discretization of the total variation. Moreover, we connect the discrete neural network problem to a finite difference discretization of the infinite-dimensional total variation minimization problem. Numerical experiments are presented supporting our theoretical findings.
Submission history
From: Andreas Langer [view email][v1] Mon, 9 Sep 2024 12:50:45 UTC (6,323 KB)
[v2] Fri, 18 Oct 2024 15:34:16 UTC (6,323 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.