Computer Science > Social and Information Networks
[Submitted on 9 Sep 2024]
Title:Fast Computation for the Forest Matrix of an Evolving Graph
View PDF HTML (experimental)Abstract:The forest matrix plays a crucial role in network science, opinion dynamics, and machine learning, offering deep insights into the structure of and dynamics on networks. In this paper, we study the problem of querying entries of the forest matrix in evolving graphs, which more accurately represent the dynamic nature of real-world networks compared to static graphs. To address the unique challenges posed by evolving graphs, we first introduce two approximation algorithms, \textsc{SFQ} and \textsc{SFQPlus}, for static graphs. \textsc{SFQ} employs a probabilistic interpretation of the forest matrix, while \textsc{SFQPlus} incorporates a novel variance reduction technique and is theoretically proven to offer enhanced accuracy. Based on these two algorithms, we further devise two dynamic algorithms centered around efficiently maintaining a list of spanning converging forests. This approach ensures $O(1)$ runtime complexity for updates, including edge additions and deletions, as well as for querying matrix elements, and provides an unbiased estimation of forest matrix entries. Finally, through extensive experiments on various real-world networks, we demonstrate the efficiency and effectiveness of our algorithms. Particularly, our algorithms are scalable to massive graphs with more than forty million nodes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.