Computer Science > Networking and Internet Architecture
[Submitted on 6 Sep 2024]
Title:Digital Twin Enabled Data-Driven Approach for Traffic Efficiency and Software-Defined Vehicular Network Optimization
View PDF HTML (experimental)Abstract:In the realms of the internet of vehicles (IoV) and intelligent transportation systems (ITS), software defined vehicular networks (SDVN) and edge computing (EC) have emerged as promising technologies for enhancing road traffic efficiency. However, the increasing number of connected autonomous vehicles (CAVs) and EC-based applications presents multi-domain challenges such as inefficient traffic flow due to poor CAV coordination and flow-table overflow in SDVN from increased connectivity and limited ternary content addressable memory (TCAM) capacity. To address these, we focus on a data-driven approach using virtualization technologies like digital twin (DT) to leverage real-time data and simulations. We introduce a DT design and propose two data-driven solutions: a centralized decision support framework to improve traffic efficiency by reducing waiting times at roundabouts and an approach to minimize flow-table overflow and flow re-installation by optimizing flow-entry lifespan in SDVN. Simulation results show the decision support framework reduces average waiting times by 22% compared to human-driven vehicles, even with a CAV penetration rate of 40%. Additionally, the proposed optimization of flow-table space usage demonstrates a 50% reduction in flow-table space requirements, even with 100% penetration of connected vehicles.
Submission history
From: Mohammad Sajid Shahriar [view email][v1] Fri, 6 Sep 2024 21:13:06 UTC (2,241 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.