Electrical Engineering and Systems Science > Systems and Control
[Submitted on 4 Sep 2024 (v1), last revised 1 Nov 2024 (this version, v3)]
Title:Enhancing Information Freshness: An AoI Optimized Markov Decision Process Dedicated In the Underwater Task
View PDF HTML (experimental)Abstract:Ocean exploration utilizing autonomous underwater vehicles (AUVs) via reinforcement learning (RL) has emerged as a significant research focus. However, underwater tasks have mostly failed due to the observation delay caused by acoustic communication in the Internet of underwater things. In this study, we present an AoI optimized Markov decision process (AoI-MDP) to improve the performance of underwater tasks. Specifically, AoI-MDP models observation delay as signal delay through statistical signal processing, and includes this delay as a new component in the state space. Additionally, we introduce wait time in the action space, and integrate AoI with reward functions to achieve joint optimization of information freshness and decision-making for AUVs leveraging RL for training. Finally, we apply this approach to the multi-AUV data collection task scenario as an example. Simulation results highlight the feasibility of AoI-MDP, which effectively minimizes AoI while showcasing superior performance in the task. To accelerate relevant research in this field, we have made the simulation codes available as open-source.
Submission history
From: Jingzehua Xu [view email][v1] Wed, 4 Sep 2024 04:05:48 UTC (2,936 KB)
[v2] Sat, 21 Sep 2024 16:51:45 UTC (2,936 KB)
[v3] Fri, 1 Nov 2024 03:39:51 UTC (2,936 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.