Computer Science > Programming Languages
[Submitted on 1 Sep 2024]
Title:Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks
View PDF HTML (experimental)Abstract:WebAssembly (Wasm for short) brings a new, powerful capability to the web as well as Edge, IoT, and embedded systems. Wasm is a portable, compact binary code format with high performance and robust sandboxing properties. As Wasm applications grow in size and importance, the complex performance characteristics of diverse Wasm engines demand robust, representative benchmarks for proper tuning. Stopgap benchmark suites, such as PolyBenchC and libsodium, continue to be used in the literature, though they are known to be unrepresentative. Porting of more complex suites remains difficult because Wasm lacks many system APIs and extracting real-world Wasm benchmarks from the web is difficult due to complex host interactions. To address this challenge, we introduce Wasm-R3, the first record and replay technique for Wasm. Wasm-R3 transparently injects instrumentation into Wasm modules to record an execution trace from inside the module, then reduces the execution trace via several optimizations, and finally produces a replay module that is executable sandalone without any host environment - on any engine. The benchmarks created by our approach are (i) realistic, because the approach records real-world web applications, (ii) faithful to the original execution, because the replay benchmark includes the unmodified original code, only adding emulation of host interactions, and (iii) standalone, because the replay benchmarks run on any engine. Applying Wasm-R3 to web-based Wasm applications in the wild demonstrates the correctness of our approach as well as the effectiveness of our optimizations, which reduce the recorded traces by 99.53 percent and the size of the replay benchmark by 9.98 percent. We release the resulting benchmark suite of 27 applications, called Wasm-R3-Bench, to the community, to inspire a new generation of realistic and standalone Wasm benchmarks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.