Computer Science > Software Engineering
[Submitted on 25 Aug 2024]
Title:LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models
View PDF HTML (experimental)Abstract:Logs are ubiquitous digital footprints, playing an indispensable role in system diagnostics, security analysis, and performance optimization. The extraction of actionable insights from logs is critically dependent on the log parsing process, which converts raw logs into structured formats for downstream analysis. Yet, the complexities of contemporary systems and the dynamic nature of logs pose significant challenges to existing automatic parsing techniques. The emergence of Large Language Models (LLM) offers new horizons. With their expansive knowledge and contextual prowess, LLMs have been transformative across diverse applications. Building on this, we introduce LogParser-LLM, a novel log parser integrated with LLM capabilities. This union seamlessly blends semantic insights with statistical nuances, obviating the need for hyper-parameter tuning and labeled training data, while ensuring rapid adaptability through online parsing. Further deepening our exploration, we address the intricate challenge of parsing granularity, proposing a new metric and integrating human interactions to allow users to calibrate granularity to their specific needs. Our method's efficacy is empirically demonstrated through evaluations on the Loghub-2k and the large-scale LogPub benchmark. In evaluations on the LogPub benchmark, involving an average of 3.6 million logs per dataset across 14 datasets, our LogParser-LLM requires only 272.5 LLM invocations on average, achieving a 90.6% F1 score for grouping accuracy and an 81.1% for parsing accuracy. These results demonstrate the method's high efficiency and accuracy, outperforming current state-of-the-art log parsers, including pattern-based, neural network-based, and existing LLM-enhanced approaches.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.