Computer Science > Machine Learning
[Submitted on 20 Aug 2024 (v1), last revised 18 Sep 2024 (this version, v2)]
Title:UKAN: Unbound Kolmogorov-Arnold Network Accompanied with Accelerated Library
View PDF HTML (experimental)Abstract:In this work, we present a GPU-accelerated library for the underlying components of Kolmogorov-Arnold Networks (KANs), along with an algorithm to eliminate bounded grids in KANs. The GPU-accelerated library reduces the computational complexity of Basis Spline (B-spline) evaluation by a factor of $\mathcal{O}$(grid size) compared to existing codes, enabling batch computation for large-scale learning. To overcome the limitations of traditional KANs, we introduce Unbounded KANs (UKANs), which eliminate the need for a bounded grid and a fixed number of B-spline coefficients. To do so, we replace the KAN parameters (B-spline coefficients) with a coefficient generator (CG) model. The inputs to the CG model are designed based on the idea of an infinite symmetric grid extending from negative infinity to positive infinity. The positional encoding of grid group, a sequential collection of B-spline grid indexes, is fed into the CG model, and coefficients are consumed by the efficient implementation (matrix representations) of B-spline functions to generate outputs. We perform several experiments on regression, classification, and generative tasks, which are promising. In particular, UKAN does not require data normalization or a bounded domain for evaluation. Additionally, our benchmarking results indicate the superior memory and computational efficiency of our library compared to existing codes.
Submission history
From: Alireza Moradzadeh [view email][v1] Tue, 20 Aug 2024 21:20:38 UTC (3,198 KB)
[v2] Wed, 18 Sep 2024 17:46:11 UTC (3,198 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.