Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Aug 2024]
Title:PAFormer: Part Aware Transformer for Person Re-identification
View PDF HTML (experimental)Abstract:Within the domain of person re-identification (ReID), partial ReID methods are considered mainstream, aiming to measure feature distances through comparisons of body parts between samples. However, in practice, previous methods often lack sufficient awareness of anatomical aspect of body parts, resulting in the failure to capture features of the same body parts across different samples. To address this issue, we introduce \textbf{Part Aware Transformer (PAFormer)}, a pose estimation based ReID model which can perform precise part-to-part comparison. In order to inject part awareness to pose tokens, we introduce learnable parameters called `pose token' which estimate the correlation between each body part and partial regions of the image. Notably, at inference phase, PAFormer operates without additional modules related to body part localization, which is commonly used in previous ReID methodologies leveraging pose estimation models. Additionally, leveraging the enhanced awareness of body parts, PAFormer suggests the use of a learning-based visibility predictor to estimate the degree of occlusion for each body part. Also, we introduce a teacher forcing technique using ground truth visibility scores which enables PAFormer to be trained only with visible parts. A set of extensive experiments show that our method outperforms existing approaches on well-known ReID benchmark datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.