Computer Science > Computer Science and Game Theory
[Submitted on 2 Aug 2024]
Title:Distribution Aggregation via Continuous Thiele's Rules
View PDFAbstract:We introduce the class of \textit{Continuous Thiele's Rules} that generalize the familiar \textbf{Thiele's rules} \cite{janson2018phragmens} of multi-winner voting to distribution aggregation problems. Each rule in that class maximizes $\sum_if(\pi^i)$ where $\pi^i$ is an agent $i$'s satisfaction and $f$ could be any twice differentiable, increasing and concave real function. Based on a single quantity we call the \textit{'Inequality Aversion'} of $f$ (elsewhere known as "Relative Risk Aversion"), we derive bounds on the Egalitarian loss, welfare loss and the approximation of \textit{Average Fair Share}, leading to a quantifiable, continuous presentation of their inevitable trade-offs. In particular, we show that the Nash Product Rule satisfies\textit{ Average Fair Share} in our setting.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.