Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Aug 2024]
Title:EIUP: A Training-Free Approach to Erase Non-Compliant Concepts Conditioned on Implicit Unsafe Prompts
View PDF HTML (experimental)Abstract:Text-to-image diffusion models have shown the ability to learn a diverse range of concepts. However, it is worth noting that they may also generate undesirable outputs, consequently giving rise to significant security concerns. Specifically, issues such as Not Safe for Work (NSFW) content and potential violations of style copyright may be encountered. Since image generation is conditioned on text, prompt purification serves as a straightforward solution for content safety. Similar to the approach taken by LLM, some efforts have been made to control the generation of safe outputs by purifying prompts. However, it is also important to note that even with these efforts, non-toxic text still carries a risk of generating non-compliant images, which is referred to as implicit unsafe prompts. Furthermore, some existing works fine-tune the models to erase undesired concepts from model weights. This type of method necessitates multiple training iterations whenever the concept is updated, which can be time-consuming and may potentially lead to catastrophic forgetting. To address these challenges, we propose a simple yet effective approach that incorporates non-compliant concepts into an erasure prompt. This erasure prompt proactively participates in the fusion of image spatial features and text embeddings. Through attention mechanisms, our method is capable of identifying feature representations of non-compliant concepts in the image space. We re-weight these features to effectively suppress the generation of unsafe images conditioned on original implicit unsafe prompts. Our method exhibits superior erasure effectiveness while achieving high scores in image fidelity compared to the state-of-the-art baselines. WARNING: This paper contains model outputs that may be offensive.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.