Computer Science > Machine Learning
[Submitted on 1 Aug 2024]
Title:A Natural Language Processing Framework for Hotel Recommendation Based on Users' Text Reviews
View PDFAbstract:Recently, the application of Artificial Intelligence algorithms in hotel recommendation systems has become an increasingly popular topic. One such method that has proven to be effective in this field is Deep Learning, especially Natural Language processing models, which are able to extract semantic knowledge from user's text reviews to create more efficient recommendation systems. This can lead to the development of intelligent models that can classify a user's preferences and emotions based on their feedback in the form of text reviews about their hotel stay experience. In this study, we propose a Natural Language Processing framework that utilizes customer text reviews to provide personalized recommendations for the most appropriate hotel based on their preferences. The framework is based on Bidirectional Encoder Representations from Transformers (BERT) and a fine-tuning/validation pipeline that categorizes customer hotel review texts into "Bad," "Good," or "Excellent" recommended hotels. Our findings indicate that the hotel recommendation system we propose can significantly enhance the user experience of booking accommodations by providing personalized recommendations based on user preferences and previous booking history.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.