Mathematics > Optimization and Control
[Submitted on 26 Jul 2024 (v1), last revised 1 Oct 2024 (this version, v4)]
Title:Volume-preserving geometric shape optimization of the Dirichlet energy using variational neural networks
View PDFAbstract:In this work, we explore the numerical solution of geometric shape optimization problems using neural network-based approaches. This involves minimizing a numerical criterion that includes solving a partial differential equation with respect to a domain, often under geometric constraints like a constant volume. We successfully develop a proof of concept using a flexible and parallelizable methodology to tackle these problems. We focus on a prototypal problem: minimizing the so-called Dirichlet energy with respect to the domain under a volume constraint, involving Poisson's equation in $\mathbb{R}^2$. We use variational neural networks to approximate the solution to Poisson's equation on a given domain, and represent the shape through a neural network that approximates a volume-preserving transformation from an initial shape to an optimal one. These processes are combined in a single optimization algorithm that minimizes the Dirichlet energy. A significant advantage of this approach is its inherent parallelizability, which makes it easy to handle the addition of parameters. Additionally, it does not rely on shape derivative or adjoint calculations. Our approach is tested on Dirichlet and Robin boundary conditions, parametric right-hand sides, and extended to Bernoulli-type free boundary problems. The source code for solving the shape optimization problem is open-source and freely available.
Submission history
From: Amaury Bélières--Frendo [view email][v1] Fri, 26 Jul 2024 20:04:11 UTC (21,296 KB)
[v2] Thu, 1 Aug 2024 12:47:06 UTC (21,367 KB)
[v3] Sat, 10 Aug 2024 12:52:29 UTC (21,365 KB)
[v4] Tue, 1 Oct 2024 16:21:15 UTC (13,379 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.