Computer Science > Computation and Language
[Submitted on 26 Jul 2024]
Title:Towards Generalized Offensive Language Identification
View PDF HTML (experimental)Abstract:The prevalence of offensive content on the internet, encompassing hate speech and cyberbullying, is a pervasive issue worldwide. Consequently, it has garnered significant attention from the machine learning (ML) and natural language processing (NLP) communities. As a result, numerous systems have been developed to automatically identify potentially harmful content and mitigate its impact. These systems can follow two approaches; (1) Use publicly available models and application endpoints, including prompting large language models (LLMs) (2) Annotate datasets and train ML models on them. However, both approaches lack an understanding of how generalizable they are. Furthermore, the applicability of these systems is often questioned in off-domain and practical environments. This paper empirically evaluates the generalizability of offensive language detection models and datasets across a novel generalized benchmark. We answer three research questions on generalizability. Our findings will be useful in creating robust real-world offensive language detection systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.