Mathematics > Numerical Analysis
[Submitted on 23 Jul 2024 (v1), last revised 17 Aug 2024 (this version, v2)]
Title:Regenerative Ulam-von Neumann Algorithm: An Innovative Markov chain Monte Carlo Method for Matrix Inversion
View PDF HTML (experimental)Abstract:This paper presents an extension of the classical Ulan-von Neumann Markov chain Monte-Carlo algorithm for the computation of the matrix inverse. The algorithm presented in this paper, termed as \emph{regenerative Ulam-von Neumann algorithm}, utilizes the regenerative structure of classical, non-truncated Neumann series defined by a non-singular matrix and produces an unbiased estimator of the matrix inverse. Furthermore, the accuracy of the proposed algorithm depends on a single parameter that controls the total number of Markov transitions simulated thus avoiding the challenge of balancing between the total number of Markov chain replications and its corresponding length as in the classical Ulam-von Neumann algorithm. To efficiently utilize the Markov chain transition samples in the calculation of the regenerative quantities, the proposed algorithm quantifies automatically the contribution of each Markov transition to all regenerative quantities by a carefully designed updating scheme that utilized three separate matrices containing the current weights, total weights, and regenerative cycle count, respectively. A probabilistic analysis of the performance of the algorithm, including the variance of the estimator, is provided. Finally, numerical experiments verify the qualitative effectiveness of the proposed scheme.
Submission history
From: Yingdong Lu [view email][v1] Tue, 23 Jul 2024 17:25:02 UTC (686 KB)
[v2] Sat, 17 Aug 2024 01:32:44 UTC (748 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.