Computer Science > Data Structures and Algorithms
[Submitted on 21 Jul 2024]
Title:New Philosopher Inequalities for Online Bayesian Matching, via Pivotal Sampling
View PDF HTML (experimental)Abstract:We study the polynomial-time approximability of the optimal online stochastic bipartite matching algorithm, initiated by Papadimitriou et al. (EC'21). Here, nodes on one side of the graph are given upfront, while at each time $t$, an online node and its edge weights are drawn from a time-dependent distribution. The optimal algorithm is $\textsf{PSPACE}$-hard to approximate within some universal constant. We refer to this optimal algorithm, which requires time to think (compute), as a philosopher, and refer to polynomial-time online approximations of the above as philosopher inequalities. The best known philosopher inequality for online matching yields a $0.652$-approximation. In contrast, the best possible prophet inequality, or approximation of the optimum offline solution, is $0.5$.
Our main results are a $0.678$-approximate algorithm and a $0.685$-approximation for a vertex-weighted special case. Notably, both bounds exceed the $0.666$-approximation of the offline optimum obtained by Tang, Wu, and Wu (STOC'22) for the vertex-weighted problem. Building on our algorithms and the recent black-box reduction of Banihashem et al. (SODA'24), we provide polytime (pricing-based) truthful mechanisms which $0.678$-approximate the social welfare of the optimal online allocation for bipartite matching markets.
Our online allocation algorithm relies on the classic pivotal sampling algorithm (Srinivasan FOCS'01, Gandhi et al. this http URL'06), along with careful discarding to obtain negative correlations between offline nodes. Consequently, the analysis boils down to examining the distribution of a weighted sum $X$ of negatively correlated Bernoulli variables, specifically lower bounding its mass below a threshold, $\mathbb{E}[\min(1,X)]$, of possible independent interest. Interestingly, our bound relies on an imaginary invocation of pivotal sampling.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.