Mathematics > Numerical Analysis
[Submitted on 22 Jul 2024]
Title:High-dimensional sparse trigonometric approximation in the uniform norm and consequences for sampling recovery
View PDF HTML (experimental)Abstract:Recent findings by Jahn, T. Ullrich, Voigtlaender [10] relate non-linear sampling numbers for the square norm to quantities involving trigonometric best $m-$term approximation errors in the uniform norm. Here we establish new results for sparse trigonometric approximation with respect to the high-dimensional setting, where the influence of the dimension $d$ has to be controlled. In particular, we focus on best $m-$term trigonometric approximation for (unweighted) Wiener classes in $L_q$ and give precise constants. Our main results are approximation guarantees where the number of terms $m$ scales at most quadratic in the inverse accuracy $1/\varepsilon$. Providing a refined version of the classical Nikol'skij inequality we are able to extrapolate the $L_q$-result to $L_\infty$ while limiting the influence of the dimension to a $\sqrt{d}$-factor and an additonal $\log$-term in the size of the (rectangular) spectrum. This has consequences for the tractable sampling recovery via $\ell_1$-minimization of functions belonging to certain Besov classes with bounded mixed smoothness. This complements polynomial tractability results recently given by Krieg [12].
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.