Computer Science > Cryptography and Security
[Submitted on 22 Jul 2024 (v1), last revised 12 Nov 2024 (this version, v4)]
Title:Fast Preemption: Forward-Backward Cascade Learning for Efficient and Transferable Proactive Adversarial Defense
View PDF HTML (experimental)Abstract:Deep learning technology has brought convenience and advanced developments but has become untrustworthy due to its sensitivity to adversarial attacks. Attackers may utilize this sensitivity to manipulate predictions. To defend against such attacks, existing anti-adversarial methods typically counteract adversarial perturbations post-attack, while we have devised a proactive strategy that preempts by safeguarding media upfront, effectively neutralizing potential adversarial effects before the third-party attacks occur. This strategy, dubbed Fast Preemption, provides an efficient transferable preemptive defense by using different models for labeling inputs and learning crucial features. A forward-backward cascade learning algorithm is used to compute protective perturbations, starting with forward propagation optimization to achieve rapid convergence, followed by iterative backward propagation learning to alleviate overfitting. This strategy offers state-of-the-art transferability and protection across various systems. With the running of only three steps, our Fast Preemption framework outperforms benchmark training-time, test-time, and preemptive adversarial defenses. We have also devised the first, to our knowledge, effective white-box adaptive reversion attack and demonstrate that the protection added by our defense strategy is irreversible unless the backbone model, algorithm, and settings are fully compromised. This work provides a new direction to developing proactive defenses against adversarial attacks.
Submission history
From: Hanrui Wang [view email][v1] Mon, 22 Jul 2024 10:23:44 UTC (5,639 KB)
[v2] Fri, 13 Sep 2024 05:21:20 UTC (5,617 KB)
[v3] Tue, 5 Nov 2024 06:36:14 UTC (5,617 KB)
[v4] Tue, 12 Nov 2024 02:47:26 UTC (2,980 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.