Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Jul 2024 (v1), last revised 18 Sep 2024 (this version, v2)]
Title:VideoClusterNet: Self-Supervised and Adaptive Face Clustering For Videos
View PDF HTML (experimental)Abstract:With the rise of digital media content production, the need for analyzing movies and TV series episodes to locate the main cast of characters precisely is gaining this http URL, Video Face Clustering aims to group together detected video face tracks with common facial identities. This problem is very challenging due to the large range of pose, expression, appearance, and lighting variations of a given face across video frames. Generic pre-trained Face Identification (ID) models fail to adapt well to the video production domain, given its high dynamic range content and also unique cinematic style. Furthermore, traditional clustering algorithms depend on hyperparameters requiring individual tuning across datasets. In this paper, we present a novel video face clustering approach that learns to adapt a generic face ID model to new video face tracks in a fully self-supervised fashion. We also propose a parameter-free clustering algorithm that is capable of automatically adapting to the finetuned model's embedding space for any input video. Due to the lack of comprehensive movie face clustering benchmarks, we also present a first-of-kind movie dataset: MovieFaceCluster. Our dataset is handpicked by film industry professionals and contains extremely challenging face ID scenarios. Experiments show our method's effectiveness in handling difficult mainstream movie scenes on our benchmark dataset and state-of-the-art performance on traditional TV series datasets.
Submission history
From: Devesh Walawalkar [view email][v1] Tue, 16 Jul 2024 23:34:55 UTC (33,621 KB)
[v2] Wed, 18 Sep 2024 16:18:29 UTC (33,621 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.