Economics > General Economics
[Submitted on 24 Apr 2024]
Title:Using Artificial Intelligence to Unlock Crowdfunding Success for Small Businesses
View PDFAbstract:While small businesses are increasingly turning to online crowdfunding platforms for essential funding, over 40% of these campaigns may fail to raise any money, especially those from low socio-economic areas. We utilize the latest advancements in AI technology to identify crucial factors that influence the success of crowdfunding campaigns and to improve their fundraising outcomes by strategically optimizing these factors. Our best-performing machine learning model accurately predicts the fundraising outcomes of 81.0% of campaigns, primarily based on their textual descriptions. Interpreting the machine learning model allows us to provide actionable suggestions on improving the textual description before launching a campaign. We demonstrate that by augmenting just three aspects of the narrative using a large language model, a campaign becomes more preferable to 83% human evaluators, and its likelihood of securing financial support increases by 11.9%. Our research uncovers the effective strategies for crafting descriptions for small business fundraising campaigns and opens up a new realm in integrating large language models into crowdfunding methodologies.
Current browse context:
econ.GN
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.