Computer Science > Cryptography and Security
[Submitted on 11 Jul 2024]
Title:ProxyGPT: Enabling Anonymous Queries in AI Chatbots with (Un)Trustworthy Browser Proxies
View PDF HTML (experimental)Abstract:AI-powered chatbots (ChatGPT, Claude, etc.) require users to create an account using their email and phone number, thereby linking their personally identifiable information to their conversational data and usage patterns. As these chatbots are increasingly being used for tasks involving sensitive information, privacy concerns have been raised about how chatbot providers handle user data. To address these concerns, we present ProxyGPT, a privacy-enhancing system that enables anonymous queries in popular chatbot platforms. ProxyGPT leverages volunteer proxies to submit user queries on their behalf, thus providing network-level anonymity for chatbot users. The system is designed to support key security properties such as content integrity via TLS-backed data provenance, end-to-end encryption, and anonymous payment, while also ensuring usability and sustainability. We provide a thorough analysis of the privacy, security, and integrity of our system and identify various future research directions, particularly in the area of private chatbot query synthesis. Our human evaluation shows that ProxyGPT offers users a greater sense of privacy compared to traditional AI chatbots, especially in scenarios where users are hesitant to share their identity with chatbot providers. Although our proof-of-concept has higher latency than popular chatbots, our human interview participants consider this to be an acceptable trade-off for anonymity. To the best of our knowledge, ProxyGPT is the first comprehensive proxy-based solution for privacy-preserving AI chatbots. Our codebase is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.