Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Jul 2024]
Title:Estimation of the Area and Precipitation Associated with a Tropical Cyclone Biparjoy by using Image Processing
View PDF HTML (experimental)Abstract:The rainfall associated with Topical Cyclone(TC) contributes a major amount to the annual rainfall in India. Due to the limited research on the quantitative precipitation associated with Tropical Cyclones (TC), the prediction of the amount of precipitation and area that it may cover remains a challenge. This paper proposes an approach to estimate the accumulated precipitation and impact on affected area using Remote Sensing data. For this study, an instance of Extremely Severe Cyclonic Storm, Biparjoy that formed over the Arabian Sea and hit India in 2023 is considered in which we have used the satellite images of IMERG-Late Run of Global Precipitation Measurement (GPM). Image processing techniques were employed to identify and extract precipitation clusters linked to the cyclone. The results indicate that Biparjoy contributed a daily average rainfall of 53.14 mm/day across India and the Arabian Sea, with the Indian boundary receiving 11.59 mm/day, covering an extensive 411.76 thousand square kilometers. The localized intensity and variability observed in states like Gujarat, Rajasthan, Madhya Pradesh, and Uttar Pradesh highlight the need for tailored response measures, emphasizing the importance of further research to enhance predictive models and disaster readiness, crucial for building resilience against the diverse impacts of tropical cyclones.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.