Computer Science > Social and Information Networks
[Submitted on 3 Jul 2024]
Title:Modelling the mitigation of anti-vaccine opinion propagation to suppress epidemic spread: A computational approach
View PDF HTML (experimental)Abstract:Information regarding vaccines from sources such as health services, media, and social networks can significantly shape vaccination decisions. In particular, the dissemination of negative information can contribute to vaccine hesitancy, thereby exacerbating infectious disease outbreaks. This study investigates strategies to mitigate anti-vaccine social contagion through effective counter-campaigns that disseminate positive vaccine information and encourage vaccine uptake, aiming to reduce the size of epidemics. In a coupled agent-based model that consists of opinion and disease diffusion processes, we explore and compare different heuristics to design positive campaigns based on the network structure and local presence of negative vaccine attitudes. We examine two campaigning regimes: a static regime with a fixed set of targets, and a dynamic regime in which targets can be updated over time. We demonstrate that strategic targeting and engagement with the dynamics of anti-vaccine influence diffusion in the network can effectively mitigate the spread of anti-vaccine sentiment, thereby reducing the epidemic size. However, the effectiveness of the campaigns differs across different targeting strategies and is impacted by a range of factors. We find that the primary advantage of static campaigns lies in their capacity to act as an obstacle, preventing the clustering of emerging anti-vaccine communities, thereby resulting in smaller and unconnected anti-vaccine groups. On the other hand, dynamic campaigns reach a broader segment of the population and adapt to the evolution of anti-vaccine diffusion, not only protecting susceptible agents from negative influence but also fostering positive propagation within negative regions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.