Computer Science > Machine Learning
[Submitted on 1 Jul 2024]
Title:Improve ROI with Causal Learning and Conformal Prediction
View PDF HTML (experimental)Abstract:In the commercial sphere, such as operations and maintenance, advertising, and marketing recommendations, intelligent decision-making utilizing data mining and neural network technologies is crucial, especially in resource allocation to optimize ROI. This study delves into the Cost-aware Binary Treatment Assignment Problem (C-BTAP) across different industries, with a focus on the state-of-the-art Direct ROI Prediction (DRP) method. However, the DRP model confronts issues like covariate shift and insufficient training data, hindering its real-world effectiveness. Addressing these challenges is essential for ensuring dependable and robust predictions in varied operational contexts.
This paper presents a robust Direct ROI Prediction (rDRP) method, designed to address challenges in real-world deployment of neural network-based uplift models, particularly under conditions of covariate shift and insufficient training data. The rDRP method, enhancing the standard DRP model, does not alter the model's structure or require retraining. It utilizes conformal prediction and Monte Carlo dropout for interval estimation, adapting to model uncertainty and data distribution shifts. A heuristic calibration method, inspired by a Kaggle competition, combines point and interval estimates. The effectiveness of these approaches is validated through offline tests and online A/B tests in various settings, demonstrating significant improvements in target rewards compared to the state-of-the-art method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.