Computer Science > Software Engineering
[Submitted on 28 Jun 2024]
Title:MulTi-Wise Sampling: Trading Uniform T-Wise Feature Interaction Coverage for Smaller Samples
View PDF HTML (experimental)Abstract:Ensuring the functional safety of highly configurable systems often requires testing representative subsets of all possible configurations to reduce testing effort and save resources. The ratio of covered t-wise feature interactions (i.e., T-Wise Feature Interaction Coverage) is a common criterion for determining whether a subset of configurations is representative and capable of finding faults. Existing t-wise sampling algorithms uniformly cover t-wise feature interactions for all features, resulting in lengthy execution times and large sample sizes, particularly when large t-wise feature interactions are considered (i.e., high values of t). In this paper, we introduce a novel approach to t-wise feature interaction sampling, questioning the necessity of uniform coverage across all t-wise feature interactions, called \emph{\mulTiWise{}}. Our approach prioritizes between subsets of critical and non-critical features, considering higher t-values for subsets of critical features when generating a t-wise feature interaction sample. We evaluate our approach using subject systems from real-world applications, including \busybox{}, \soletta{}, \fiasco{}, and \uclibc{}. Our results show that sacrificing uniform t-wise feature interaction coverage between all features reduces the time needed to generate a sample and the resulting sample size. Hence, \mulTiWise{} Sampling offers an alternative to existing approaches if knowledge about feature criticality is available.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.