Quantum Physics
[Submitted on 28 Jun 2024]
Title:Classical Bandit Algorithms for Entanglement Detection in Parameterized Qubit States
View PDF HTML (experimental)Abstract:Entanglement is a key resource for a wide range of tasks in quantum information and computing. Thus, verifying availability of this quantum resource is essential. Extensive research on entanglement detection has led to no-go theorems (Lu et al. [Phys. Rev. Lett., 116, 230501 (2016)]) that highlight the need for full state tomography (FST) in the absence of adaptive or joint measurements. Recent advancements, as proposed by Zhu, Teo, and Englert [Phys. Rev. A, 81, 052339, 2010], introduce a single-parameter family of entanglement witness measurements which are capable of conclusively detecting certain entangled states and only resort to FST when all witness measurements are inconclusive. We find a variety of realistic noisy two-qubit quantum states $\mathcal{F}$ that yield conclusive results under this witness family. We solve the problem of detecting entanglement among $K$ quantum states in $\mathcal{F}$, of which $m$ states are entangled, with $m$ potentially unknown. We recognize a structural connection of this problem to the Bad Arm Identification problem in stochastic Multi-Armed Bandits (MAB). In contrast to existing quantum bandit frameworks, we establish a new correspondence tailored for entanglement detection and term it the $(m,K)$-quantum Multi-Armed Bandit. We implement two well-known MAB policies for arbitrary states derived from $\mathcal{F}$, present theoretical guarantees on the measurement/sample complexity and demonstrate the practicality of the policies through numerical simulations. More broadly, this paper highlights the potential for employing classical machine learning techniques for quantum entanglement detection.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.