Computer Science > Computational Complexity
[Submitted on 23 Jun 2024]
Title:Formula Size-Depth Tradeoffs for Iterated Sub-Permutation Matrix Multiplication
View PDFAbstract:We study the formula complexity of Iterated Sub-Permutation Matrix Multiplication, the logspace-complete problem of computing the product of $k$ $n$-by-$n$ Boolean matrices with at most a single $1$ in each row and column. For all $d \le \log k$, this problem is solvable by $n^{O(dk^{1/d})}$ size monotone formulas of two distinct types: (unbounded fan-in) $AC^0$ formulas of depth $d+1$ and (semi-unbounded fan-in) $SAC^0$ formulas of $\bigwedge$-depth $d$ and $\bigwedge$-fan-in $k^{1/d}$. The results of this paper give matching $n^{\Omega(dk^{1/d})}$ lower bounds for monotone $AC^0$ and $SAC^0$ formulas for all $k \le \log\log n$, as well as slightly weaker $n^{\Omega(dk^{1/2d})}$ lower bounds for non-monotone $AC^0$ and $SAC^0$ formulas. These size-depth tradeoffs converge at $d = \log k$ to tight $n^{\Omega(\log k)}$ lower bounds for both unbounded-depth monotone formulas [Ros15] and bounded-depth non-monotone formulas [Ros18]. Our non-monotone lower bounds extend to the more restricted Iterated Permutation Matrix Multiplication problem, improving the previous $n^{k^{1/\exp(O(d))}}$ tradeoff for this problem [BIP98].
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.