Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Jun 2024 (v1), last revised 28 Nov 2024 (this version, v2)]
Title:Mitigating the Human-Robot Domain Discrepancy in Visual Pre-training for Robotic Manipulation
View PDF HTML (experimental)Abstract:Learning generalizable visual representations across different embodied environments is essential for effective robotic manipulation in real-world scenarios. However, the limited scale and diversity of robot demonstration data pose a significant challenge. Recent research has explored leveraging large-scale human activity data for pre-training, but the substantial morphological differences between humans and robots introduce a significant human-robot domain discrepancy, hindering the generalization of these models to downstream manipulation tasks. To overcome this, we propose a novel adaptation paradigm that leverages readily available paired human-robot video data to bridge the domain gap. Our method employs a human-robot contrastive alignment loss to align the semantics of human and robot videos, adapting pre-trained models to the robot domain in a parameter-efficient manner. Experiments on 20 simulated tasks across two different benchmarks and five real-world tasks demonstrate significant improvements. These results span both single-task and language-conditioned multi-task settings, evaluated using two different pre-trained models. Compared to existing pre-trained models, our adaptation method improves the average success rate by over $7\%$ across multiple tasks on both simulated benchmarks and real-world evaluations. We will release the code and models.
Submission history
From: Jiaming Zhou [view email][v1] Thu, 20 Jun 2024 11:57:46 UTC (1,365 KB)
[v2] Thu, 28 Nov 2024 06:40:32 UTC (6,895 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.