Computer Science > Machine Learning
[Submitted on 19 Jun 2024]
Title:The Surprising Benefits of Base Rate Neglect in Robust Aggregation
View PDF HTML (experimental)Abstract:Robust aggregation integrates predictions from multiple experts without knowledge of the experts' information structures. Prior work assumes experts are Bayesian, providing predictions as perfect posteriors based on their signals. However, real-world experts often deviate systematically from Bayesian reasoning. Our work considers experts who tend to ignore the base rate. We find that a certain degree of base rate neglect helps with robust forecast aggregation.
Specifically, we consider a forecast aggregation problem with two experts who each predict a binary world state after observing private signals. Unlike previous work, we model experts exhibiting base rate neglect, where they incorporate the base rate information to degree $\lambda\in[0,1]$, with $\lambda=0$ indicating complete ignorance and $\lambda=1$ perfect Bayesian updating. To evaluate aggregators' performance, we adopt Arieli et al. (2018)'s worst-case regret model, which measures the maximum regret across the set of considered information structures compared to an omniscient benchmark. Our results reveal the surprising V-shape of regret as a function of $\lambda$. That is, predictions with an intermediate incorporating degree of base rate $\lambda<1$ can counter-intuitively lead to lower regret than perfect Bayesian posteriors with $\lambda=1$. We additionally propose a new aggregator with low regret robust to unknown $\lambda$. Finally, we conduct an empirical study to test the base rate neglect model and evaluate the performance of various aggregators.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.